

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 1 of 17 ©2024 Marlin Technologies, Inc

5054XX M-Flex Color Display
TouchGFX Template User Guide

CREATED: C. PAWLAK DATE: 10/06/2020
CHECKED: J. COOPER DATE: 08/22/2024
APPROVED: J. COOPER DATE: 08/22/2024
ECN: 18093E DATE: 07/31/2024

Contents
1. Software Installation .. 3

2. Creating a Project in TouchGFX Designer Using the Template .. 4

3. Loading the Display Module with Software .. 5

4. Hardware Buttons .. 6

5. IO and LED Driver Functions ... 7

5.1 LCD Screen ... 7

5.2 Keypad LEDs .. 7

5.3 Outputs .. 7

5.4 Inputs .. 8

6. EEPROM .. 9

7. Tasks ...10

8. Semaphores ...11

9. CAN ...12

10.1 Receiving CAN messages ..12

10.1 Transmitting CAN messages ..12

10. Clock ..13

11. Changing Application Software Identifiers ..14

12. Troubleshooting Tips and Common Pitfalls ...16

12.1 Clean Building ..16

12.2 Entering Bootmode ...16

12.3 Screen Blinking/Unresponsive CAN ...16

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 2 of 17 ©2024 Marlin Technologies, Inc

12.3.1 Hard Fault - Array out of bounds ...17

12.3.2 Hard Fault – C++ Error Handling ..17

12.3.3 Operating System - Task Mismanagement ...17

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 3 of 17 ©2024 Marlin Technologies, Inc

1. Software Installation
Listed below is the PC software necessary to create application software for the 5054XX M-FLEX
X-Inch Color Display. Follow the directions beside each software item listed to install that piece
of software.

Note: The use of asterisks (*) in file and folder names indicate varying text depending on the
version of the software installed.

1. TouchGFX Designer is used to design the GUI (graphical user interface) for the screens

displayed on the M-Flex display. Double-click on TouchGFX-*.*.*.msi to begin installing the
software. Follow the directions on the screen to complete installation.

2. The Marlin TouchGFX Template enables TouchGFX Designer to generate applications
that are compatible with the M-Flex display hardware. Copy XinchMarlinTemplate-*.*.*.tpa
to C:\TouchGFX*.*.*\app\packages. The exact directory path may vary depending on
where TouchGFX Designer is installed.

3. The Marlin Programming Tool is used in conjunction with the USB-CAN dongle to
download the user’s application to the M-Flex display. Open the
MarlinProgToolSetup_*_*_*_Basic folder and double-click MarlinProgToolSetup_Basic.msi to
begin installing the software. Follow the directions on the screen to complete installation.

3.1. Depending on where the Programming Tool was installed, the user guide should be

located at C:\Program Files (x86)\Marlin
Technologies\MarlinProgTool_Basic\UserGuide_*.pdf. Open the user guide for reference
in the next step.

4. Install the driver for the appropriate USB-CAN dongle, as directed in the Programming

Tool User guide.

5. The Marlin Hex Parser (used to generate the required s19 files) requires the .NET 7.0 (or

newer) desktop runtime. If this is not installed, it can be downloaded here.

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 4 of 17 ©2024 Marlin Technologies, Inc

2. Creating a Project in TouchGFX Designer Using the
Template
The Marlin TouchGFX template can be found under the “By Partners” tab when creating a new
project in TouchGFX.

Look for the option titled “M-FLEX Color Display” and be sure to select the most recent version
on the right-hand side.

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 5 of 17 ©2024 Marlin Technologies, Inc

3. Loading the Display Module with Software
The 5054xx display module requires an .S19 file to be loaded. An .S19 file can be created by
clicking the “Program and Run Target” button in the bottom right-hand corner of the window.

If you see the below lines in the build window, then the .s19 creation was successful.

To load the .S19 file, the Marlin Programming tool must be used. For more information on the
Marlin programming tool, refer to the user guide located at:

C:\Program Files (x86)\Marlin Technologies\MarlinProgTool\UserGuide.pdf

The below instructions may also serve to help.

1) Open the Marlin programming tool
2) Click the Browse button and navigate to the “${Project_Location}/build/” folder.
3) Here there are two options to choose from:

a) Choose “target.s19” for the full program. (This option will take the longest)
b) Choose “intflash.s19” for only the program space. (This is meant for debug only.

This file will load much faster than “target.s19” . This will not load image assets and
may result in unpredictable behavior if images have changed since the last build)

4) Click the “Search” button and ensure that the display shows up and is selected in the drop
down menu.

5) Click the “Program” button to download the application to the display module.
a) Loading time is largely dependent on the size and number of image assets used in the

application.

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 6 of 17 ©2024 Marlin Technologies, Inc

4. Hardware Buttons
The display module’s buttons can be used via the interactions tab in the top right-hand corner
of the TouchGFX editor.

When using the display modules buttons, select “Hardware button is clicked” as the interaction
trigger, and refer to figure X for what to select under the “Choose button key” option.

Tip: When choosing the “Action”, if the desired behavior is, for example, an output to turn on,
choose “Call new Virtual Function” as the action. This will enable the ability to call underlying
hardware functions when a button is pressed. The generated virtual function can be found in
the view base cpp file that gets generated for that screen.

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 7 of 17 ©2024 Marlin Technologies, Inc

5. IO and LED Driver Functions
All IO and LED driver functions can be accessed by including the “bsp.h” header file.

5.1 LCD Screen
The LCD back light brightness can be modified by calling:

void setKeypadBacklightIntensity(uint32_t);

The uint32_t parameter is a number from 0-1000 that represents a duty cycle percentile
(0.1% per bit).

5.2 Keypad LEDs
There are 2 keypad LEDs on either side of the keypad, an RGB and solid Red LED. The
individual sides cannot be independently controlled. The functions for controlling these LEDs
are:

void setColorLedRGB(uint32_t, uint32_t, uint32_t);
void setColorLedRed(uint32_t);
void setColorLedGreen(uint32_t);
void setColorLedBlue(uint32_t);
void setRedLedIntensity(uint32_t);

The uint32_t parameters are numbers from 0-1000 that represent a duty cycle percentile
(0.1% per bit).
For the setColorLedRGB function, the parameters are in the order of Red, Green, Blue.

5.3 Outputs
There are 2 PWM half-bridge outputs on the display. They can be controlled using the following
functions:

void setOutput_1(uint32_t);
void setOutput_2(uint32_t);

Again, the uint32_t parameters are numbers from 0-1000 that represent a duty cycle
percentile (0.1% per bit).

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 8 of 17 ©2024 Marlin Technologies, Inc

5.4 Inputs
There are 4 inputs on the display module. Inputs 1 & 2 are both digital and analog. Inputs 3 &
4 are only digital. All inputs come with a toggleable internal pull up to Vin. The following
functions can be used to interact with the inputs:

void input1_enablePullUp(void);
void input1_disablePullUp(void);
void input1_enablePullDown(void);
void input1_disablePullDown(void);
void input1_set37vRange(void);
void input1_set10vRange(void);
int input1_ReadDigitalStatus(void);
int input1_ReadAnalogStatus(void);

void input2_enablePullUp(void);
void input2_disablePullUp(void);
void input2_enablePullDown(void);
void input2_disablePullDown(void);
void input2_set37vRange(void);
void input2_set10vRange(void);
int input2_ReadDigitalStatus(void);
int input2_ReadAnalogStatus(void);

void input3_enablePullUp(void);
void input3_disablePullUp(void);
int input3_ReadDigitalStatus(void);

void input4_enablePullUp(void);
void input4_disablePullUp(void);
int input4_ReadDigitalStatus(void);

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 9 of 17 ©2024 Marlin Technologies, Inc

6. EEPROM
The display module contains a 512Kb EEPROM. Driver functions for interfacing with the
EEPROM can be used by including the “25lc512t.h” file.

The SPI peripheral used for the EEPROM is a shared resource. So before accessing the
EEPROM, “EE_InitSpi” must be called:

void EEP_InitSpi();

Use the following functions to read/write data to the EEPROM, or check the EEPROM status:

uint8_t EEP_ReadStatus();
uint8_t EEP_ReadByte(uint16_t Address);
void EEP_ReadBlock(uint16_t Address, uint8_t *pData, uint16_t Size);
void EEP_EraseChip();
void EEP_WriteByte(uint16_t Address, uint8_t Data);
uint8_t EEP_WriteBlock(uint16_t Address, uint8_t *pData, uint16_t Size);

where

 Address is the EEPROM address (starting at 0)
 *pData points to a block of bytes to be read or written to
 Data is a byte of data to write
 Size is the number of bytes of data to be read/written.

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 10 of 17 ©2024 Marlin Technologies, Inc

7. Tasks
The TouchGFX template utilizes CMSIS V2 FreeRTOS for runtime task management. Tasks are
initialized in the “freertos.c” file. Task files are located in the “Src/Tasks” folder. Each task
should get its own source file for the sake of organization.

Each task requires a unique handle and a set of attributes. Handles and Attributes are initialized
in the “freertos.c” file.

The template includes a user CAN task which can be used as an example for initializing new
tasks:

/* Definitions for userCANTask */
osThreadId_t userCANTaskHandle;
const osThreadAttr_t userCANTask_attributes = {
 .name = "userCANTask",
 .stack_size = 128 * 4,
 .priority = (osPriority_t) osPriorityNormal,
};

userCANTaskHandle = osThreadNew(StartUserCANTask, NULL, &userCANTask_attributes);

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 11 of 17 ©2024 Marlin Technologies, Inc

8. Semaphores
Semaphores are used to control access to shared resources. Semaphores are initialized in the
“freertos.c” file. Semaphore files are located in the “Src/Semaphores” folder. Each semaphore
should ger it’s own file for the sake of organization.

Each semaphore requires a “Handle” and “Attributes”. Handles and Attributes are initialized in
the “freertos.c” file.

The template includes a pre-existing semaphore that can be used as an example:

/* Definitions for adcSem */
osSemaphoreId_t adcSemHandle;
const osSemaphoreAttr_t adcSem_attributes = {
 .name = "adcSem"
};

adcSemHandle = osSemaphoreNew(1, 1, &adcSem_attributes);

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 12 of 17 ©2024 Marlin Technologies, Inc

9. CAN
CAN functions can be utilized by including the “marlin_can_lib.h” header file. There are only 2
functions needed to utilize CAN.

These functions both require the operating system to be active in order to work. Do
not call these functions before the operating system has started. This can be
ensured by only calling these functions from within Tasks.

10.1 Receiving CAN messages
“CAN_DequeueMessage” is a blocking function and will yield the task to the OS scheduler for
the specified timeout or until a CAN message is received. The received message will be returned
on the passed *msg parameter. If the timeout is reached without a new message being
received, *msg will contain the last received message.

This function must never be called from within the Display Task (responsible for
drawing the screen) given its yielding behavior.

Note: It is recommended to call “CAN_DequeueMessage” with a timeout value of
“osWaitForever”, as this prevents the return of stale message data.

10.1 Transmitting CAN messages
“CAN_QueueMessage” is safe to call from any task as it does not yield.

It is not necessary for the can_tx_msg parameter to persist past the calling function. A deep
copy of the struct is made when it is inserted into the queue.

enum marlinJ1939_error_codes CAN_DequeueMessage(struct can_msg *msg, uint32_t ms);
enum marlinJ1939_error_codes CAN_QueueMessage(struct can_tx_msg *msg);

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 13 of 17 ©2024 Marlin Technologies, Inc

10. Clock
The display module has a built-in Real-Time Clock (RTC) that can be used to track time and
date. The RTC can be utilized by including the “rtc.h” header file. There are 4 functions that are
used to interact with the RTC:

Where:

- *hrtc will always be &hrtc
- *sDate/*sTime is the struct that will store the Date/Time
- Format will be either RTC_FORMAT_BIN for Standard Binary format or RTC_FORMAT_BCD

for Binary Coded Decimal format.

Note: When using the Get functions, they both must be used at the same time and in
the order of Time then Date. Not doing so will leave the RTC in a bad state and
result in bad future readings.

Example:
 // Init current time
 HAL_RTC_GetTime(&hrtc, &lastTime, RTC_FORMAT_BIN);
 HAL_RTC_GetDate(&hrtc, &lastDate, RTC_FORMAT_BIN);

 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc,
 RTC_DateTypeDef *sDate, uint32_t Format);
 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc,
 RTC_TimeTypeDef *sTime, uint32_t Format);
 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc,
 RTC_TimeTypeDef *sTime, uint32_t Format);
 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc,
 RTC_DateTypeDef *sDate, uint32_t Format);

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 14 of 17 ©2024 Marlin Technologies, Inc

11. Changing Application Software Identifiers
Application Identifiers are located in the “J1939_Def.h” header file and in the
“bootloader_helper.h” header file.

A. Module number is located in the “bootloader_helper.h” header file:

#define PROJECT_NUMBER 505403

B. J1939 Source address is located in the “J1939_Def.h” header file:

#define SOURCE_ADDRESS 0xD0

C. Software Revision is located in the “J1939_Def.h” header file:

#define SW_REV {'$','E','X','2',' ',' '}

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 15 of 17 ©2024 Marlin Technologies, Inc

D. Hardware ID is located in the “bootloader_helper.h” header file:

#define MODULE_HWID 0x0299

Do Not Change this number. Changing this number will make reprogramming of the
module difficult and/or impossible.

E. Software Number is located in the “J1939_Def.h” header file:

#define SW_NUMBER {'0','1','3','6','5','2'}

F. TouchGFX Template Version is located in the “J1939_Def.h” header file:

#define SW_ID {1, 5, 1}

While not critical, like Hardware ID is, it’s recommended not to modify the Template version as
it will make troubleshooting with Marlin representatives more difficult should such help be
required.

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 16 of 17 ©2024 Marlin Technologies, Inc

12. Troubleshooting Tips and Common Pitfalls
12.1 Clean Building
Certain build errors and unexpected functionality may be resolved by deleting the build folder
(in the application’s top-level folder) prior to clicking Run Target in TouchGFX Designer. This
forces a clean build of the application, in case TouchGFX Designer fails to rebuild a portion of
the application that the user has modified since the previous build. Remember to back up any
necessary files (such as .s19 files) before deleting the build folder.

12.2 Entering Bootmode
If there is an error in the user application that prevents the display module from communicating
with the Programming Tool, the display can be forced into bootloader mode and then
reprogrammed. To enter bootloader mode, first power down the display module. Then power
up the module while holding down the following three buttons:

When the display is in bootloader mode, the screen is black, and the blue or red LEDs will be
turned on for about 4 seconds. After which the red LEDs will turn off.

Note: while the red LEDs are ON, the display will not respond to CAN requests.

If “Hardware ID Mismatch!” is displayed by the Programming Tool, check that MODULE_HWID
in Inc\bootloader_helper.h is defined as follows:

The hardware ID defined in the application program must match the hardware ID of the
bootloader. The Programming Tool checks for matching hardware IDs to ensure that compatible
software modules are programmed onto modules.

12.3 Screen Blinking/Unresponsive CAN
If after powering on the display it appears to blink at a regular period and is largely
unresponsive (on both CAN and the UI), then it might be watchdog resetting. When certain
faults are encountered, the display will enter an infinite loop and wait for the watchdog timer to

Figure 1

5054XX M-Flex Color Display

TouchGFX Template User Guide

A013493UC Page 17 of 17 ©2024 Marlin Technologies, Inc

force a system reset. Depending on the code, this can be a perpetual reset loop, which results
in the observed screen blinking. There are 2 common causes for this, hard faults and operating
system related faults.

If this is happening, the only way to reprogram will be to put the display into boot
mode. Refer to the above section 13.2.

12.3.1 Hard Fault - Array out of bounds
There are 2 possible causes for array out bounds faults. Direct array accesses and TouchGFX
asset accesses.

Ensure any arrays or lists are not being accessed beyond their limits. Under such circumstances,
the microcontroller doesn’t know how to handle it. Ensure that any array accesses are within
bounds. Violations here can often happen in while or for loops where a hardcoded value wasn’t
changed when an array size was modified.

TouchGFX generates “key” values for all used text and image assets. These keys can be found
in the following files:

#include <texts/TextKeysAndLanguages.hpp>
#include <BitmapDatabase.hpp>

It is imperative that hardcoded magic numbers are not used to access assets used in
TouchGFX, as the numerical values of these keys are subject to change often. If an access is
attempted to an asset that doesn’t exist, or no longer exists, it is treated as a hard fault and the
display will reset.

12.3.2 Hard Fault – C++ Error Handling
The template setup supports writing helper functions in C++ as well as C. This means that you
also have access to the C++ standard libraries. But with this must come some caution. Because
this is a bare metal application, try-catch error handling is not supported, and any errors
thrown by the C++ standard libraries will result in a hard fault and subsequent system reset.

12.3.3 Operating System - Task Mismanagement
Ensure that tasks are properly yielded at regular intervals. The watchdog is reset in its own
independent OS task. If this task cannot be called at least once every 200ms, then the
watchdog timer will hit 0 and result in a system reset. The watchdog task might not be called if
a higher priority or equal priority task is not yielding itself to the scheduler. This can commonly
happen in any created CAN task as improper use of the “Dequeue_CanMessage” function can
result in said task not yielding properly.

If not a CAN related task, ensure that there is a reliable call of the “osDelay” function. This
function is provided by CMSIS and if not available already, can be utilized by including the
“cmsis_os2.h” header file.

