

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 1 of 44 ©2021 Marlin Technologies, Inc

505403 M-Flex 4.3-Inch Color

Display User Guide
CREATED: C. PAWLAK DATE: 10/06/2020

CHECKED: S. JOHNSON DATE: 03/25/21

APPROVED: S. JOHNSON DATE: 04/06/21

ECN: 17321E DATE: 06/20/23

Contents
1. Software Installation .. 2

2. Creating a Project in TouchGFX Designer ... 3

3. Opening an Existing Project in TouchGFX Designer ... 5

4. Programming the Display Module .. 7

5. Running the Simulator in TouchGFX Designer ..10

5.1 Customizing Simulated Button Press Detection..11

6. Hardware Buttons ...13

6.1 Customizing Button Press Detection ...15

7. API Functions and Driver Functions ...16

7.1 LEDs ...16

7.2 Backlights ..18

7.3 EEPROM ..21

7.4 Inputs and Outputs ..23

8. Tasks ...26

9. Semaphores ...27

10. CAN ...28

10.1 CAN Rx ..28

10.2 CAN Tx ..32

11. Clock ..34

12. Changing Application Software Identifiers ..36

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 2 of 44 ©2021 Marlin Technologies, Inc

13. Troubleshooting Tips ...38

Appendix: Giving a Button the Ability to Navigate to More Than One Possible Screen39

1. Software Installation
Listed below is the PC software necessary to create application software for the 505403 M-FLex
4.3-Inch Color Display. Follow the directions beside each software item listed to install that
piece of software.

Note: The use of asterisks (*) in file and folder names indicate varying text depending on the
version of the software installed.

1. TouchGFX Designer is used to design the GUI (graphical user interface) for the screens

displayed on the M-Flex display. Double-click on TouchGFX-*.*.*.msi to begin installing the
software. Follow the directions on the screen to complete installation.

2. The Marlin TouchGFX Template enables TouchGFX Designer to generate applications
that are compatible with the M-Flex display hardware. Copy 43inchMarlinTemplate-*.*.*.tpa
to C:\TouchGFX*.*.*\app\packages. The exact directory path may vary depending on
where TouchGFX Designer is installed.

3. The Marlin Programming Tool is used in conjunction with the USB-CAN dongle to
download the user’s application to the M-Flex display. Open the
MarlinProgToolSetup_*_*_*_Basic folder and double-click MarlinProgToolSetup_Basic.msi to
begin installing the software. Follow the directions on the screen to complete installation.

3.1. Depending on where the Programming Tool was installed, the user guide should be

located at C:\Program Files (x86)\Marlin
Technologies\MarlinProgTool_Basic\UserGuide_*.pdf. Open the user guide for reference
in the next step.

4. Install the driver for the appropriate USB-CAN dongle, as directed in the Programming
Tool User guide.

WARNING: Using versions of software other than provided may result in errors and
unintended functionality due to software and/or hardware incompatibility.

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 3 of 44 ©2021 Marlin Technologies, Inc

2. Creating a Project in TouchGFX Designer
Follow the steps below to create a project in TouchGFX Designer, in which screens for the user
application can be designed.

Note: The use of asterisks (*) in file and folder names indicate varying text depending on the
version of the software installed.

1. Double-click on C:\TouchGFX*.*.*\designer\TouchGFXDesigner-*.*.*.exe to start
TouchGFX Designer. The exact file path may vary depending on where TouchGFX
Designer was installed.

2. Click on the MY APPLICATIONS tab of the pop-up window.
See Figure 1.

3. Hover over the window below APPLICATION TEMPLATE.
Click CHANGE when that text appears, as shown in Figure
1.

4. Click on the Marlin Technologies tab as shown in Figure
2.

5. A box for the M-FLEX 4.3” Color Display template should
now be displayed. Check the version of the template as
indicated in Figure 2. If it is not the desired version
proceed to step 6. Otherwise, skip to step 9.

6. Click the “i” icon (see Figure 2) to bring up a window that
allows the template version to be changed.

Figure 2

Figure 1

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 4 of 44 ©2021 Marlin Technologies, Inc

7. To see the list of available

template versions, click the
up/down arrows beside the
version number, as shown in
Figure 3. If the up/down arrows
are not available, or the desired
version is not shown, contact
Marlin Technologies. Otherwise,
select the desired version from
the drop-down menu.

8. Click the X in the upper-right
corner of the window (see Figure 3) to close it.

9. Click on the box for the M-FLEX 4.3” Color

Display template (see Figure 4).

10. Then click Select (see Figure 4). The Select
button will not become active until the
template box is clicked in the previous step.

 Figure 4

Figure 3

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 5 of 44 ©2021 Marlin Technologies, Inc

11. The window with the MY APPLICATIONS tab
should now be displayed again, as shown in
Figure 5. Change the application name as
desired. This will create a folder of the same
name in the location of the application
directory, which will be set up in step 12.

12. Change the application directory as desired
(see note in Figure 5.). Leave UI TEMPLATE
set to a Blank UI.

13. Click CREATE (see Figure 5). A progress bar
is displayed while the project is being
created. Afterwards, the screen editor is
displayed. See touchgfx.com for information
about designing screens using TouchGFX
Designer.

3. Opening an Existing Project in TouchGFX Designer
When an application has is created in TouchGFX Designer, a project file with the extension

.touchgfx is created within the TouchGFX folder inside the project folder. For example, in the

provided sample application software MarlinDemo4_3Inch, the project file is located at … \

MarlinDemo4_3Inch \ TouchGFX \ MarlinDemo4_3Inch.touchgfx. In Windows File Explorer,

double-clicking the .touchgfx file will open the project in TouchGFX Designer.

Another way to open the project is to launch TouchGFX first, and then use the SEARCH FOR

RECENT APPLICATIONS tool in the pop-up window, as shown circled in Figure 6 below, to

navigate to the .touchgfx file.

Figure 5

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 6 of 44 ©2021 Marlin Technologies, Inc

If the was project was opened recently, it may appear under Recent Applications in the pop-up

window (below the circled selection in Figure 6). Simply click on the project to open it.

Figure 6

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 7 of 44 ©2021 Marlin Technologies, Inc

4. Programming the Display Module
Once a project has been created in TouchGFX Designer, application software can be built and

then programmed onto the M-Flex display module by following the steps below

1. If the application software has already been built and an .s19 file already exists, skip to

step 3. Otherwise, open the project in TouchGFX Designer (if not opened already). See

section 3. Opening an Existing Project in TouchGFX Designer, as needed.

2. In TouchGFX Designer, click Run Target (as denoted in Figure 7) to build the application

and generate the .s19 file that the Programming Tool will use to program the display.

The status of the build is displayed at the bottom of the TouchGFX Design window (as

indicated in Figure 7). When the build is complete, the build status is shown as “Run

Target | Failed,” even if the build is successful. This is expected. A failure is indicated

because TouchGFX Designer attempts (and is unable) to program the display.

Programming will be carried out in a later step.

Figure 7

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 8 of 44 ©2021 Marlin Technologies, Inc

If the application builds successfully, the file update_format.s19 will be created (or, if it

already exists, modified with the current time and date) in the build folder in the project

directory. The outcome of the build will also be indicated near the bottom of the detailed

log. The detailed log is accessed by clicking the Detailed Log in the lower right corner of

the TouchGFX Designer window (as shown in Figure 7). For a successful build, the log

indicates that update_format.s19 has been created (or modified) and displays the

program’s checksum. Otherwise, the log will indicate which errors prevented a

successful build. A quick way to check if a build successful is to look for the checksum

text in the log, as shown in Figure 8:

3. Connect the USB-CAN dongle to the PC and the CAN bus.

4. Power and CAN lines will need to be connected to the J1

connector on the back of the display modules. See Figure 9

shows the pin numbers on J1. Connect power and CAN lines as

follows:

4.1. Connect CAN LO to pin 7 of J1 and CAN HI to pin 8 of J1.

4.2. Connect battery voltage (12V) to pin 1 of J1, and ground to

pin 2 of J1.

See the module’s outline drawing for further details regarding

the J1 connector pins.

Figure 8

Figure 9: Connector J1

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 9 of 44 ©2021 Marlin Technologies, Inc

5. With the display module powered on, launch the Marlin Programming Tool application,

as directed in the Programming Tool User Guide. The tool should automatically connect

to the M-Flex display, indicating a module has been found. If not, click the Search

button (as denoted in Figure 10) to attempt another connection. If the Programming

tool continues to indicate “No Controllers Found,” check the set-up. Make sure the baud

rate is set to 250 Kbps. See the Programming Tool User Guide for further information.

6. Click the Browse button (as denoted in Figure 10) and select update_format.s19

(located in the Build folder of the TouchGFX project).

7. Click the Program button (as denoted in Figure 10) to download the application to the

display module.

Figure 10

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 10 of 44 ©2021 Marlin Technologies, Inc

5. Running the Simulator in TouchGFX Designer
Some screen functionality can be tested without programming the display module. This is

possible using TouchGFX Designer’s simulator, which is activated by clicking the Run Simulator

button in the upper-right corner of window, as indicated in Figure 11.

Once the simulator is running, button presses on the module can be simulated by pressing keys

1 through 8 on the PC keyboard. (Note: This does not include keys 1 through 8 on the numeric

keypad of the PC keyboard.) The module buttons and their corresponding PC keys are indicated

in Figure 12.

Other hardware functionality (e.g. CAN messages, screen backlight, button backlights, LEDs,

inputs, and outputs) cannot be simulated. For any code written involving such functionality, be

sure to use “#ifndef SIMULATOR” to avoid simulator compile errors. For example, see the

highlighted text in the code below:

void LEDsView::displayRgbGreenLevel()

{

 rgbGreenBar.setValue(rgbGreenLevel);

 rgbGreenBar.invalidate();

 Unicode::snprintf(rgbGreenValBuffer, RGBGREENVAL_SIZE, "%u", rgbGreenLevel);

 rgbGreenVal.invalidate();

#ifndef SIMULATOR

 setColorLedRGB(rgbRedLevel * 10,rgbGreenLevel * 10,rgbBlueLevel * 10);

#endif

}

Figure 11

Figure 12

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 11 of 44 ©2021 Marlin Technologies, Inc

The line of code between the highlighted text turns on LEDs in an actual application, but it

would cause a compile error when Run Simulator is clicked. The #if/#endif statement prevents

that code from compiling the code for the simulator.

5.1 Customizing Simulated Button Press Detection
Simulated button-press detection is handled in sampleKeys(), which is defined in

code_generation_resources\FrontendApplication.hpp:

The highlighted instances of text above represent each of the PC keyboard keys that are used

to simulate button presses on the display module. Each instance corresponds to a similarly

numbered button in Figure 12. If the buttons are used to trigger simple actions, like screen

transitions, the code above will likely suffice.

However, for more elaborate functionality, it may be necessary to modify sampleKeys().

Consider the case where the down-button moves a cursor downwards through a list of menu

items, and keeping the button held down causes the cursor to rapidly repeat the downwards

 virtual void sampleKeys(){

 if(GetKeyState('1') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<0));

 }

 else if(GetKeyState('2') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<1));

 }

 else if(GetKeyState('3') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<2));

 }

 else if(GetKeyState('4') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<3));

 }

 else if(GetKeyState('5') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<4));

 }

 else if(GetKeyState('6') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<5));

 }

 else if(GetKeyState('7') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<6));

 }

 else if(GetKeyState('8') & 0x8000){

 FrontendApplicationBase::handleKeyEvent((1<<7));

 }

 return;

 }

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 12 of 44 ©2021 Marlin Technologies, Inc

movement until the button is released. With the definition of sampleKeys() above, holding down

the down-key will move the cursor too rapidly for the operator to keep track of.

For the sample application MarlinDemo4_3Inch, a wait-time was added to ensure the cursor

moves at a more reasonable rate. See the use of KEY_WAIT and tickCounter below:

Note: in MarlinDemo4_3Inch sample code, the definition of sampleKeys() was moved from

FrontendApplication.hpp to FrontendApplication.cpp (both files in the same folder).

The resulting functionality is only a simplified version of the actual button-press-detection

functionality. The actual functionality is handled in KeySampler.cpp, which is discussed in

section 5.1 Customizing Button Press Detection. For the MarlinDemo4_3Inch sample application,

the code changes above are sufficient in most cases, though some rapid key presses may be

missed, for example. If a more accurate simulation of button presses is needed, change the

code in sampleKeys() to more closely resemble the code in KeySampler.cpp.

void FrontendApplication::sampleKeys()

{

 if(GetKeyState('1') & 0x8000)

 {

 if(tickCounter++ > KEY_WAIT)

 {

 tickCounter = 0;

 FrontendApplicationBase::handleKeyEvent((1<<0));

 }

 }

 else if(GetKeyState('2') & 0x8000)

 {

 if(tickCounter++ > KEY_WAIT)

 {

 tickCounter = 0;

 FrontendApplicationBase::handleKeyEvent((1<<1));

 }

 }

 .

 .

 .

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 13 of 44 ©2021 Marlin Technologies, Inc

6. Hardware Buttons
To make use of the display module’s buttons, select the
Interactions tab near the upper-right corner of the TouchGFX
Designer window (see Figure 13) and click the Add Interaction
button.

A new interaction and its settings should now be displayed. Go
to the Trigger pull-down menu and select Hardware button is
clicked, as shown in Figure 14. The next setting, Choose
button key (also shown in Figure 14), ties the interaction to a
given button on the display module. Each button is
represented by a unique number, as shown in Figure 15. For
example, if the interaction is intended to be executed when the UP button is pressed, select 16
from the drop-down menu under Choose button key (as was done in
Figure 14).

Now choose an item from the Action pull-down menu to determine
what the button press should do. Figure 14, for example, shows how
the user would configure the Action setting to so that a button press
would change screens. With the Change screen option selected, a pull-
down menu appears which includes all of the user-defined screens. (If
the screen does not already exist, it cannot be selected from the pull-
down menu.)

Button interactions like the one in Figure 14 configure is limited to

linking a given button to only one possible screen. On a main menu

screen, such as the one implemented in the sample application

software MarlinDemo4_3Inch, there may be a need for an Enter

button that navigates to various possible screens, depending on what

menu item the cursor is on. One way to accomplish this is detailed in

the Appendix: Giving a Button the Ability to Navigate to More Than

One Possible Screen.

Figure 13

Figure 14

Figure 15

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 14 of 44 ©2021 Marlin Technologies, Inc

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 15 of 44 ©2021 Marlin Technologies, Inc

6.1 Customizing Button Press Detection
Button functionality can be fine-tuned in the source code by modifying

\Src\touchGFXUserCode\KeySampler.cpp. Here debounce logic for the buttons can be

adjusted. This logic can also be modified, for example, to notify the rest of the code whether a

key has merely been pressed, or whether it has been pressed and released.

It can also be modified to signal when multiple buttons are pressed simultaneously. Note that

the buttons in Figure 15 are numbered non-consecutively; i.e. 1, 2, 4, 8… instead of 1,2,3,4…

That is because each button corresponds to a bit of the byte assembled_mask, as shown in

KeySampler::sampler() below:

Note that when a GUI is imported into TouchGFX Designer from an existing application,

KeySampler.cpp is not copied over. The code must be copied over manually if such button

functionality is to be retained.

bool KeySampler::sample(uint8_t& key)

{

 uint8_t assembled_mask =

 (((HAL_GPIO_ReadPin(SW1_GPIO_Port, SW1_Pin)==GPIO_PIN_RESET)?1:0)<<0) |

 (((HAL_GPIO_ReadPin(SW2_GPIO_Port, SW2_Pin)==GPIO_PIN_RESET)?1:0)<<1) |

 (((HAL_GPIO_ReadPin(SW3_GPIO_Port, SW3_Pin)==GPIO_PIN_RESET)?1:0)<<2) |

 (((HAL_GPIO_ReadPin(SW4_GPIO_Port, SW4_Pin)==GPIO_PIN_RESET)?1:0)<<3) |

 (((HAL_GPIO_ReadPin(SW5_GPIO_Port, SW5_Pin)==GPIO_PIN_RESET)?1:0)<<4) |

 (((HAL_GPIO_ReadPin(SW6_GPIO_Port, SW6_Pin)==GPIO_PIN_RESET)?1:0)<<5) |

 (((HAL_GPIO_ReadPin(SW7_GPIO_Port, SW7_Pin)==GPIO_PIN_RESET)?1:0)<<6) |

 (((HAL_GPIO_ReadPin(SW8_GPIO_Port, SW8_Pin)==GPIO_PIN_RESET)?1:0)<<7);

 if(assembled_mask != most_recent_detected_mask){

 handle_changed_mask(assembled_mask);

 }

 else if(assembled_mask && is_debounced()){

 return handle_debounced_mask(key);

 }

 return false;

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 16 of 44 ©2021 Marlin Technologies, Inc

7. API Functions and Driver Functions
Much of the display module’s hardware functionality can be controlled using the API (application

programming interface) functions in Src\bsp.c, while other functionality can be controlled with

driver functions in hardware-specific files. Many such functions are demonstrated in the sample

application software MarlinDemo4_3Inch.

7.1 LEDs
Two types of LEDs – red and RGB – are located to the sides of the hardware button as shown

in Figure 16 through Figure 19. They can be turned on at different duty cycles to achieve

various levels of brightness. Turning on one type of LED will turn on that type of LED (at the

same brightness) on both the left and right side of the display module. For example, it is not

possible to turn on the red LED on the left side of the display without also turning on the red

LED on the right side.

Figure 16: All LEDs off

Figure 17: Red-only LEDs on

Figure 18: RGB LEDs on (blue internal LED only)

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 17 of 44 ©2021 Marlin Technologies, Inc

The red, green, and blue internal LEDs within the RGB LEDs can be turned on individually at

different duty cycles, making a wide spectrum of colors available. Both the red and RGB LEDs

can be turned on at

the same time, with different colors visible, as shown in Figure 19. The RGB LED located at the

top of the LED light pipe, while the red LED is located at the bottom.

Use setRedLedIntensity() (Src\bsp.c) to turn on the red LED:

where duty ranges from 0 to 1000, representing 0 to 100% duty cycle.

Use setColorLedRGB () (Src\bsp.c) to turn on the RGB LED:

where R_duty, G_duty, and B_duty each range from 0 to 1000, representing 0 to 100%

duty cycle.

The individual internal LEDs of the RGB LED can also be turned on with setColorLedRed(),
setColorLedGreen(), and setColorLedBlue() (all in Src\bsp.c):

where duty ranges from 0 to 1000, representing 0 to 100% duty cycle. Note that calling any of

these functions for a given internal LED does not turn off the other internal LEDs.

void setRedLedIntensity (uint32_t duty)

void setColorLedRGB(uint32_t R_duty, uint32_t G_duty, uint32_t B_duty)

void setColorLedRed(uint32_t duty)

void setColorLedGreen(uint32_t duty)

void setColorLedBlue(uint32_t duty)

Figure 19: Both Red-only and RGB LEDs on

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 18 of 44 ©2021 Marlin Technologies, Inc

When adding LED API function calls to a file, be sure
to add #include “bsp.h” to the top of that file (or

its header file), or else there may be compile errors.

The use of LED API functions above are
demonstrated in the sample application software
MarlinDemo4_3Inch. The LEDs screen (see Figure
21) is available to the user via the LEDs item on the
Main Menu (see Figure 20).

With the MarlinDemo4_3Inch project opened in

TouchGFX Designer, refer to the LEDs screen in the Screens tab on the left-hand side of the

window. The associated source code files, which makes use of the LED API functions, are

located in MarlinDemo4_3Inch\TouchGFX\gui:

• \src\leds_screen\LEDsView.cpp

• \include\gui\leds_screen\LEDsView.hpp

7.2 Backlights
The LCD backlight, as well as the backlights for the buttons, can be turned on at different duty
cycles to achieve various levels of brightness. The button backlights are controlled in tandem.
That is, a given button backlight cannot be set to a brightness level different from the other
backlight buttons. See Figure 22 and Figure 23 for views of the button backlights off and fully

on, respectively.

Figure 20

Figure 21

Figure 22: Button backlights off

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 19 of 44 ©2021 Marlin Technologies, Inc

Use setKeypadBacklightIntensity() (Src\bsp.c) to adjust button backlights:

where duty ranges from 0 to 1000, representing 0 to 100% duty cycle.

Use setLcdBacklightIntensity() (Src\bsp.c) to adjust LCD backlight:

where duty ranges from 0 to 1000, representing 0 to 100% duty cycle.

When adding backlight API function calls to a file,

be sure to add #include “bsp.h” to the top of

that file (or its header file), or else there may be

compile errors.

The backlight-related API functions above are

demonstrated in the sample application software

MarlinDemo4_3Inch. The Backlights screen (see

Figure 25) is available to the operator via the

Backlights (savable settings) item on the Main

Menu (see Figure 24).

With the MarlinDemo4_3Inch project opened in

TouchGFX Designer, refer to the Backlights

screen in the Screens tab on the left-hand side of

the window. The associated source code files,

which make use of the backlight API functions,

are located in

MarlinDemo4_3Inch\TouchGFX\gui:

• src\backlights_screen\BacklightsView.cpp

• include\gui\backlights_screen\

BacklightsView.hpp

void setKeypadBacklightIntensity (uint32_t duty)

Figure 23: Button backlights fully on

Figure 24

Figure 25

void setLcdBacklightIntensity (uint32_t duty)

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 20 of 44 ©2021 Marlin Technologies, Inc

Note: See the section 7.3 EEPROM for information on how the settings on the Backlights

screen are saved.

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 21 of 44 ©2021 Marlin Technologies, Inc

7.3 EEPROM
The display module contains a 512Kb EEPROM (25LC512). Driver functions for interfacing with
the EEPROM are located in Src\applicationCode\25lc512t.c. Communication with the EEPROM
is via SPI (serial peripheral interface), so many of the driver functions require a pointer to an
SPI object (SPI_HandleTypeDef) as an input parameter. For these functions, pass the following
object by reference, which is defined in Src\spi.c:

Before accessing the EEPROM, EE_InitSpi() must be called:

When a project is created in TouchGFX Designer, a call to EEP_InitSpi() is automatically
included in main() (Src\main.cpp):

Note how hspi2 (mentioned above) is passed by reference.

Use the following functions to read/write data to the EEPROM, or check the EEPROM status:

where

• *HSPI should be hspi2 passed by reference,

• Address is the EEPROM address (starting at 0)

• *pData points to a block of data to be read or written to

• Data is a byte of data to write

• Size is the number of bytes of data to be read/written.

The sample application software MarlinDemo4_3Inch uses the EEPROM-related code above to
store the backlight settings available on the Backlights screen (see section 7.2 Backlights

void EEP_InitSpi(SPI_HandleTypeDef* HSPI)

SPI_HandleTypeDef hspi2;

EEP_InitSpi(&hspi2);

uint8_t EEP_ReadStatus(SPI_HandleTypeDef* HSPI);

uint8_t EEP_ReadByte(SPI_HandleTypeDef* HSPI, uint16_t Address);

void EEP_ReadBlock(SPI_HandleTypeDef* HSPI, uint16_t Address, uint8_t* pData, uint16_t Size);

void EEP_EraseChip(SPI_HandleTypeDef* HSPI);

void EEP_WriteByte(SPI_HandleTypeDef* HSPI, uint16_t Address, uint8_t Data);

uint8_t EEP_WriteBlock(SPI_HandleTypeDef* HSPI, uint16_t Address, uint8_t* pData, uint16_t

Size);

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 22 of 44 ©2021 Marlin Technologies, Inc

above). Figure 26 demonstrates the layers of code involved in storing these settings on the
EEPROM.

The settings stored in the EEPROM are stored locally (on the microcontroller) in the struct
userSettings (Src\user_settings.c):

The struct is initialized with initUserSettings(), which is called in main():

static UserSettings_Struct_t userSettings;

void initUserSettings(void);

Figure 26

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 23 of 44 ©2021 Marlin Technologies, Inc

Individual settings within the struct userSettings are written to or read from settings using the
following functions:

These functions are called from other files, including BacklightsView.cpp, where the settings
from the Backlights screen can be changed (and saved) by the operator (see section 7.2
Backlights).

The settings are written from userSettings to the EEPROM with
updateEEPROMUserSettings():

The settings are read from the EEPROM and into userSettings with

readEEPROMUserSettings():

updateEEPROMUserSettings() and readEEPROMUserSettings(), in turn, call the functions in
25lc512t.c, described above, to access the EEPROM.

7.4 Inputs and Outputs
The input and output pins on the J1 connector (see Figure
27), located on the back of the display module, are
configured as followed:

• Digital Input 1: J1-10
• Digital Input 2: J1-9
• Digital Input 3: J1-3
• Digital Input 4: J1-4
• External 5V sensor:

o 5V: J1-6,
o GND: J1-5

• PWM Output 1: J1-11
• PWM Output 2: J1-12

uint8_t getSavedLcdBacklightIntensity(void);

void saveLcdBacklightIntensity(uint8_t);

uint8_t getSavedButtonBacklightIntensity(void);

void saveButtonBacklightIntensity(uint8_t);

void updateEEPROMUserSettings();

void readEEPROMUserSettings();

Figure 27: Connector J1

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 24 of 44 ©2021 Marlin Technologies, Inc

See the outline drawing for the display module for details regarding J1 connector pins.

The four digital input statuses are read using the following function from

Drivers\STM32F7xx_HAL_Driver\Src\stm32f7xx_hal_gpio.c:

which returns 0 for off and 1 for on.

More specifically:

• For Digital Input 1 (J1-10), use HAL_GPIO_ReadPin(GPIOH, GPIO_PIN_6)
• For Digital Input 2 (J1-9), use HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_15)
• For Digital Input 3 (J1-3), use HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_12)
• For Digital Input 4 (J1-4), use HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_13)

Use enableExt5vPower() (Src\bsp.c) to turn on the external 5V sensor (J1-6):

Use disableExt5vPower() (Src\bsp.c) to turn off the external 5V sensor (J1-6):

Use setOutput_1() (Src\bsp.c) to set the duty cycle of PWM Output 1 (J1-11):

where duty ranges from 0 to 1000, representing 0 to 100% duty cycle.

Use setOutput_2() (Src\bsp.c) to set the duty cycle of PWM Output 2 (J1-12):

where duty ranges from 0 to 1000, representing 0 to 100% duty cycle.

void enableExt5vPower(void)

GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

void disableExt5vPower (void)

void setOutput_1(uint32_t duty)

void setOutput_1(uint32_t duty)

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 25 of 44 ©2021 Marlin Technologies, Inc

When adding I/O-related API functions mentioned above to a file, be sure to add #include

“bsp.h” to the top of that file (or its header file), or else there may be compile errors. When

using “HAL_GPIO_ReadPin(),” #include main.h can be added to the file (or its header file).

The I/O-related API functions and driver functions

above are used in the sample application software

MarlinDemo4_3Inch. The Inputs/Outputs screen

(see Figure 29) is available to the operator via the

Inputs/Outputs item on the Main Menu (see Figure

28).

With the MarlinDemo4_3Inch project opened in

TouchGFX Designer, refer to the InputsOutputs

screen in the Screens tab on the left-hand side of

the window. The associated source code files, which

makes use of the I/O-related API and driver

functions, are located in

MarlinDemo4_3Inch\TouchGFX:

• \src\inputsoutputs_screen\

InputsOutputsView.cpp

• \include\gui\inputsoutputs_screen\

InputsOutputsView.hpp

Figure 28

Figure 29

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 26 of 44 ©2021 Marlin Technologies, Inc

8. Tasks
When a TouchGFX project is created, certain tasks are already set up in the code. The

implementation of these tasks can be used as a basis for user-defined tasks as well. The

general structure for these tasks, with the text task_name used as a placeholder for the actual

task names, is presented below. For user-defined tasks, simply replace task_name with the

desired task name.

Tasks are initialized in main() (Src\main.cpp):

Tasks are to be defined in their own files in Src\tasks and Inc\tasks. It is a good practice to

include the name of the task in the file name as well as in the names of related functions and

objects. A task file, Src\tasks\task_name_task.c, would be created and would contain the

following:

Examples of tasks utilized in the sample application software MarlinDemo4_3Inch are discussed

in section 10.1 CAN Rx and section 10.2 CAN Tx.

task_name_task_init(osPriorityNormal, 128);

task_name_task_init(osPriorityNormal, 128);

void task_name_task_init(osPriority priority, uint32_t stack_size)

{

 osThreadDef_t thread_cfg = {"task_name_task", task_name_task, priority, 0, stack_size};

 task_name_task_handle = osThreadCreate(&thread_cfg, NULL);

 return;

}

static void task_name_task(void const *arg)

{

 for(;;)

 {

 //user code goes here

 osDelay(20); // 20 milliseconds until task executed again

 }

 return;

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 27 of 44 ©2021 Marlin Technologies, Inc

9. Semaphores
Semaphores are to be defined in their own files in Src\semaphores and Inc\semaphores.

As with tasks, it is good practice to include the name of the semaphore in the file name and the

names of related functions and objects. The general structure for semaphores used in the

sample application code (MarlinDemo4_3Inch) is presented below, with the text

semaphore_name used as a placeholder for the actual semaphore name. This example can be

used as a reference for user-defined semaphores. In Src\semaphores\semaphoreName_sem.c

there would be the following:

In the sample application, semaphore initialization functions (semaphoreNameSem_Init()) are

called within the initialization of the task the semaphore is associated with. For example:

static void task_name_task(void const *arg)

{

 semaphoreNameSem_Init(); //placed before infinite for-loop

for(;;)

 {

 //user code goes here

 osDelay(20); // 20 milliseconds until task executed again

 }

 return;

}

static osSemaphoreId semaphoreName_sem;

int semaphoreNameSem_Init(void)

{

 osSemaphoreDef(semaphoreName);

 semaphoreName_sem = osSemaphoreCresemaphoreNameate(osSemaphore(semaphoreName), 1);

 osSemaphoreWait(semaphoreName, osWaitForever);

 return SEMAPHORE_SUCCESS;

}

int semaphoreNameSem_Post(void)

{

 osSemaphoreRelease(semaphoreName);

 return SEMAPHORE_SUCCESS;

}

int semaphoreName_Get(uint32_t ms)

{

 return (osSemaphoreWait(semaphoreName, ms)==osOK)?SEMAPHORE_SUCCESS:SEMAPHORE_ERR;

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 28 of 44 ©2021 Marlin Technologies, Inc

Examples of semaphores utilized in the sample application software MarlinDemo4_3Inch are

discussed in section 10.1 CAN Rx and section 10.2 CAN Tx.

10. CAN
Marlin CAN library functions are declared in Inc\can_bus\marlin_can_lib.h. Two of the

functions, CAN_Init() and CAN_Start(), handle CAN initialization. When a TouchGFX project

is created, calls to those functions are automatically placed within main().

CAN_QueueMessage() and CAN_DequeueMessage(), are used to send and receive CAN

messages, and are discussed in section 10.1 CAN Rx and section 10.2 CAN Tx below.

(CAN_GetCountWaitingMessages() currently has no functionality.)

Note: For reference the structs for received and transmitted CAN messages, referenced in

section 10.1 CAN Rx and section 10.2 CAN Tx, are as follows (from

Inc\can_bus\j1939_message_defines):

10.1 CAN Rx
A CAN Rx task is automatically created for the user when a TouchGFX project is created. That

includes initialization of the task in main(), via user_can_task_init(). That function is defined

in an automatically generated file, Src\tasks\user_can_task.c. The file also includes the

task function user_can_task(), in which the user can add code to process incoming CAN

messages and responses:

struct can_msg{

 CAN_RxHeaderTypeDef header;

 uint8_t data[8];

};

struct can_tx_msg{

 CAN_TxHeaderTypeDef header;

 uint8_t data[8];

};

struct __attribute__((packed)) j1939_header{

 uint8_t prio_and_reserved;

 union{

 uint16_t extended;

 struct{

 uint8_t specific;

 uint8_t format;

 }pdu;

 }pgn;

 uint8_t src;

};

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 29 of 44 ©2021 Marlin Technologies, Inc

Use CAN_DequeueMessage() within user_can_task() to get a message from the CAN receive

buffer:

where ms is a timeout value, in milliseconds, for getting a message. In the code that is

automatically generated, as well as the code in the sample application software

MarlinDemo4_3Inch, this parameter is set to osWaitForever.

If a received message requires a response, call CAN_QueueMessage() to send it:

The sample application software MarlinDemo4_3Inch

demonstrates simple CAN Rx functionality on its CAN

Rx screen (see Figure 31), which is accessible via the

CAN Tx menu item in the Main Menu (see Figure

30).

With the MarlinDemo4_3Inch project opened in

TouchGFX Designer, refer to the CAN_Rx screen in

the Screens tab on the left-hand side of the window.

The associated source code, which makes use of the

CAN-Rx-related task and semaphores, is located in

MarlinDemo4_3Inch\TouchGFX\gui\:

• \src\can_rx_screen\CAN_RxView.cpp

• \include\gui\can_rx_screen\CAN_RxView.hpp

The screen shows the data bytes of received CAN,

specifically those with PGNs 0xFF60, 0xFF70, or

0xFF80. (The source addresses in these messages

static void user_can_task(void const *arg)

enum marlinJ1939_error_codes CAN_DequeueMessage(struct can_msg *msg, uint32_t ms)

enum marlinJ1939_error_codes CAN_QueueMessage(struct can_tx_msg *msg);

Figure 30

Figure 31

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 30 of 44 ©2021 Marlin Technologies, Inc

does not matter, in this case.) Individual message counts and a total message count are also

displayed.

The following functions were added to Src\tasks\user_can_task.c in order to display the various

shown in Figure 31:

Each of these functions return data that is updated by the CAN Rx task function

user_can_task() (user_can_task.c):

The CAN Rx screen also flag indicates communication errors. If one of the three CAN messages

displayed on the screen are not received withing 500 ms, that is considered a comm error. A

comm error is represented on the screen by a red triangle with an exclamation point. One can

be seen in Figure 31.

A comm error task is set up for each of the three messages displayed on the screen. See the

task code in

• Src\tasks\comm_err1.c

• Src\tasks\comm_err2.c

• Src\tasks\comm_err3.c

Each of the comm error tasks utilizes its own semaphore, each of which is defined in the

following files:

• Src\semaphores\comm_err1_sem.c

• Src\semaphores\comm_err2_sem.c

• Src\semaphores\comm_err3_sem.c

Each of the semaphore files contains functions similar to the ones described in section 9.

Semaphores. For example, when user_can_task() receives PGN 0xFF60, it calls

uint8_t* getRxMsg1()

uint8_t* getRxMsg2()

uint8_t* getRxMsg3()

uint32_t getRxMsg1Cnt()

uint32_t getRxMsg2Cnt()

uint32_t getRxMsg3Cnt()

uint32_t getTotalRxMsgCnt()

static void user_can_task(void const *arg).

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 31 of 44 ©2021 Marlin Technologies, Inc

comErr1Sem_Post() to postpone flagging a comm error. Meanwhile, comm_err1_task()

utilizes commErr1Sem_Get () to continuously check if 500 ms has elapsed since the last PGN

0xFF60 was last received.

And finally, the code for the CAN Rx screen

(TouchGFX\gui\src\can_rx_screen\CAN_RxView.cpp) determines whether to display the comm

error icon (red triangle) by calling getCommErr1Status() to see if comm_err1_task() has

flagged a comm error:

static void comm_err1_task(void const *arg)

{

 commErr1Sem_Init();

 for(;;)

 {

 if(SEM_IS_SUCCESS(commErr1Sem_Get(500)))

 {

 commError1Active = 0;

 }

 else

 {

 commError1Active = 1;

 }

 }

}

uint8_t getCommErr1Status()

{

 return commError1Active;

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 32 of 44 ©2021 Marlin Technologies, Inc

10.2 CAN Tx
As mentioned in section 10.1 CAN Rx,

user_can_task can be set up to transmit messages

in response to received CAN messages. However,

periodic CAN messages are to be transmitted

periodically, without regard to messages received,

it is suggested that the user create a new task to

handle such functionality. See section 8. Tasks for

information about setting up a task.

The user may also refer to the sample application

software MarlinDemo4_3Inch for an example. The

sample application implements simple CAN Tx

functionality, as demonstrated on the CAN Tx

screen (see Figure 33), which is accessible via the

CAN Tx menu item in the Main Menu (see Figure

32).

The user can move the cursor using the up- and

down-arrow buttons. Pressing the enter button will

add a checkmark to the box highlighted by the

cursor, and will also trigger periodic transmission of

the CAN message that is displayed in the row of the

checked box.

With the MarlinDemo4_3Inch project opened in TouchGFX Designer, refer to the CAN_Tx

screen in the Screens tab on the left-hand side of the window. The associated source code files,

which makes use of the CAN-Tx-related task, are located in MarlinDemo4_3Inch\TouchGFX\gui:

• \src\can_tx_screen\CAN_TxView.cpp

• \include\gui\can_tx_screen\CAN_RxView.hpp

The sample application utilizes a CAN Tx task, which is defined in

Src\tasks\user_can_tx_task.c. The file contains the following functions:

void user_can_tx_task_init(osPriority priority, uint32_t stack_size);

static void user_can_tx_task(void const *arg);

void enableCanTxMsg0(uint8_t status);

void enableCanTxMsg1(uint8_t status);

void enableCanTxMsg2(uint8_t status);

void enableCanTxMsg3(uint8_t status);

void enableCanTxMsg4(uint8_t status);

Figure 32

Figure 33

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 33 of 44 ©2021 Marlin Technologies, Inc

user_can_tx_task() utilizes CAN_QueueMessage() (also discussed in section 10.1 CAN Rx), to

send up to five CAN messages. For example, when the operator activates transmission of the

PGN FF01 message, the screen code in CAN_TxView.cpp calls enableCanTxMsg0():

In turn, user_can_tx_task() checks if canTxMsg0Enabled has been set, and accordingly puts

a PGN 0xFF01 CAN message into transmit buffer via CAN_QueueMessage().

void enableCanTxMsg0(uint8_t status)

{

 canTxMsg0Enabled = status;

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 34 of 44 ©2021 Marlin Technologies, Inc

11. Clock
When a Marlin TouchGFX project is created, code is automatically generated to initialize the

RTC on the microcontroller. Specifically, a call to MX_RTC_Init() (Src\rtc.c) is automatically

included in main(). The function sets up an RTC object called hrtc:

To get and set the time and date, use the following functions:

For the first input parameter of the functions above, pass hrtc passed by reference. For

Format, use RTC_FORMAT_BIN for binary values, RTC_FORMAT_BCD for binary coded

decimal values. The other data types listed among the input parameters are

RTC_TimeTypeDef and RTC_DateTypeDef, are defined in stm32f7xx_hal_rtc.h:

See the definition of RTC_TimeTypeDef in stm32f7xx_hal_rtc.h for descriptions and value

ranges of the struct members.

RTC_HandleTypeDef hrtc;

HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format);

HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format);

HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format);

HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format);

typedef struct

{

 uint8_t Hours;

 uint8_t Minutes;

 uint8_t Seconds;

 uint32_t SubSeconds;

 uint32_t SecondFraction;

 uint8_t TimeFormat;

 uint32_t DayLightSaving;

 uint32_t StoreOperation;

}RTC_TimeTypeDef;

typedef struct

{

 uint8_t WeekDay;

 uint8_t Month

 uint8_t Date

 uint8_t Year

}RTC_DateTypeDef;

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 35 of 44 ©2021 Marlin Technologies, Inc

The sample application software MarlinDemo4_3Inch

includes a screen (see Figure 35) that allows the

operator to set the time and date. This screen is

accessible via the Clock menu item in the Main Menu

(see Figure 34):

With the MarlinDemo4_3Inch project opened in

TouchGFX Designer, refer to the Clock screen in the

Screens tab on the left-hand side of the window. The

associated source code files, which make use of the

CAN-Tx-related task, are located in

MarlinDemo4_3Inch\TouchGFX\gui\:

• \src\ clock_screen\ClockView.cpp

• include\gui\clock_screen\ClockView.hpp

On this screen, the operator moves the cursor

between individual parameters of the time and date,

using the left- and right-arrow buttons. The time and

date parameters are adjusted the up- and down-

arrows. The time and date are saved to the RTC only

when the operator presses the Save button, located

under the disk icon displayed on the screen. The

changes can be cancelled using the Cancel button, located under the X icon displayed on the

screen. Pressing the Cancel button reverts the time and date parameters to the current date

and time. Below is an example of how ClockView.cpp uses HAL_RTC_GetTime() and

HAL_RTC_GetDate():

And HAL_RTC_SetTime() and HAL_RTC_SetDate() (mentioned above), passing input

parameters by reference:

 HAL_RTC_GetTime(&hrtc, ¤tTime, RTC_FORMAT_BIN);

 HAL_RTC_GetDate(&hrtc, ¤tDate, RTC_FORMAT_BIN);

 HAL_RTC_SetTime(&hrtc, &newTime, RTC_FORMAT_BIN);

 HAL_RTC_SetDate(&hrtc, &newDate, RTC_FORMAT_BIN);

Figure 34

Figure 35

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 36 of 44 ©2021 Marlin Technologies, Inc

12. Changing Application Software Identifiers
Below are customizable values and text in the source code that identify various aspects of the

application software and display module. Such identifiers are typically be transmitted in CAN

messages or displayed on the screen.

In …\Inc\bootloader_helper.h:

• PROJECT_NUMBER is the part number of the display module. It is used in the J1939

address claim message (see above) and is displayed by the Marlin Programming Tool

(see Figure 36).

In …\Inc\J1939_DEF.h:

• The following are used in name field of the J1939 address claim message:

• SW_NUMBER is an ASCII string representing the part number for the application

software.

• SW_ID is an ASCII string that indicates the revision of the application software

(SW_NUMBER). It is displayed by the Marlin Programming Tool (see Figure 36).

#define SW_NUMBER {'0', '1', '2', '8', '8', '7'} // Marlin Software Number

#define SW_ID {'$', 'A', 'X', '2', ' ', ' '} // Software Revision

#define PROJECT_NUMBER 505403

 // Application J1939 Name Field

 #define MODULE_IDENTIFIER PROJECT_NUMBER // typically Marlin model number

 #define MANUFACTURER_CODE 169 // use 169 for Marlin Technologies Inc

 #define ECU_INSTANCE 0 // use 0 for first/only instance

 #define FUNCTION_INSTANCE 0 // use 0 for only one function instance

 #define FUNCTION 255 // use 255 for not available

 #define VEHICLE_SYSTEM 0 // use 0 for non-specific system

 #define VEHICLE_SYSTEM_INSTANCE 0 // use 0 for one instance

 #define INDUSTRY_GROUP 2 // use 2 for Agriculture & Forestry

 #define ARBITRARY_ADDRESS_CAPABLE 0 // use 0 for FALSE, 1 for TRUE

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 37 of 44 ©2021 Marlin Technologies, Inc

• SOURCE_ADDRESS is the source address of the display module, as transmitted in CAN

messages. It is also displayed by the Marlin Programming Tool (see Figure 36).

It is not recommended to change items in bootloader_helper.h and J1939_def.h, other than the

ones mentioned above. Doing so can result in errors and unexpected functionality. For example,

MODULE_HWID is value representing the type of hardware in the display module. It is

expected to match the hardware ID in the display module’s bootloader program.

If the IDs do not match, the Marlin Programming Tool will not readily program the module. In
that case, the operator will need to force the module will need to be forced into bootloader

#define SOURCE_ADDRESS 0xD0

#define MODULE_HWID 0x0299

Figure 36

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 38 of 44 ©2021 Marlin Technologies, Inc

mode to enable it to be programmed again. See section 13. Troubleshooting Tips for more
information.

13. Troubleshooting Tips
1. Certain build errors and unexpected functionality may be resolved by deleting the build

folder (in the application’s top-level folder) prior to clicking Run Target in TouchGFX

Designer. This forces a clean build of the application, in case TouchGFX Designer fails to

rebuild a portion of the application that the user has modified since the previous build.

Remember to back up any necessary files (such as .s19 files) before deleting the build

folder.

2. If there is an error in the user application that prevents the display module from

communicating with the Programming Tool, the display can be forced into bootloader mode

and then reprogrammed. To enter bootloader mode, first power down the display module.

Then power up the module while holding down the following three buttons:

When the display is in bootloader mode, the screen is black and the blue or red LEDs are

turned on.

3. If “Hardware ID Mismatch!” is displayed by the Programming Tool, check that

MODULE_HWID in Inc\bootloader_helper.h is defined as follows:

The hardware ID defined in the application program must match the hardware ID of the

bootloader, which is 0x0299. The Programming Tool checks for matching hardware IDs to

ensure that compatible software modules are programmed onto modules.

Figure 37

#define MODULE_HWID 0x0299

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 39 of 44 ©2021 Marlin Technologies, Inc

Appendix: Giving a Button the Ability to Navigate to More

Than One Possible Screen

On the Main Menu screen in the
sample application software
MarlinDemo4_3Inch (see Figure 38),
pressing UP and DOWN buttons
moves a cursor through the list of
screens, and pressing the Enter
button loads the screen that is
highlighted by the cursor.

If a hardware button is to trigger a
transition to one of several possible
screens, it will take more than a
single TouchGFX “interaction” to
implement that functionality. The
following steps were taken to set up
the Enter button functionality in the
sample application:

Figure 38

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 40 of 44 ©2021 Marlin Technologies, Inc

1. An interaction was created in TouchGFX Designer in which
the Enter button triggers, not a screen transition, but a
virtual function called handleEnterButton() (see Figure 39).
This virtual function is hand-coded, as described in a later
step, and it ultimately handles the transition to the
appropriate screen.

Figure 39

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 41 of 44 ©2021 Marlin Technologies, Inc

2. For each menu item in the Main Menu, a dummy button was created
by dragging a touchscreen button from the widget panel (see Figure
40) to an area of the canvas that is outside the active screen.

3. Only the names of the dummy buttons need be changed; the

appearance and other properties of the buttons do not matter
because the buttons will not be visible on the screen. With a dummy
button selected, its name can be changed on the Settings tab (see
Figure 41) located on the right side of the TouchGFX Designer
window. These are “dummy” buttons because they are merely being
used to generate code that can be used by the virtual function to
change screens (not to mention that the Marlin display does not
support touch screen buttons).

4. For each dummy button created, an interaction was created to link

the dummy button to a screen transition. For example, see
goToClockScreen under the list of interactions for the MainMenu
screen. As shown in Figure 42, goToClockScreen uses
goToClockScreenDummyButton to set a transition to the Clock
screen.

Figure 40

Figure 41

Figure 42

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 42 of 44 ©2021 Marlin Technologies, Inc

5. The Generate Code button was then clicked in the upper-right corner of the TouchGFX
Designer window (see Figure 43).

This generated a code function based on each the screen-transition interactions mentioned
above. The functions generated are declared in MarlinDemo4_3Inch \ TouchGFX \
generated \ gui_generated \ include \ gui_generated \ common \
FrontendApplicationBase.hpp (see highlighted text below):

Note that the function names are derived from the screen name plus the type of screen
transition defined for it: goto<name of screen>Screen<screen transition type>. For
example, for the interaction shown in Figure 42, the function
gotoClockScreenNoTransition was generated. These functions will be called inside the
virtual function handleEnterButton() in the next step Note: The function names are not
based on the name of the interaction they are derived from, despite the similarities between

class FrontendApplicationBase : public touchgfx::MVPApplication

{

public:

 FrontendApplicationBase(Model& m, FrontendHeap& heap);

 virtual ~FrontendApplicationBase() { }

 // CAN_Rx

 void gotoCAN_RxScreenNoTransition();

 // MainMenu

 void gotoMainMenuScreenNoTransition();

 // LEDs

 void gotoLEDsScreenNoTransition();

 // Backlights

 void gotoBacklightsScreenNoTransition();

 // CAN_Tx

 void gotoCAN_TxScreenNoTransition();

 // InputsOutputs

 void gotoInputsOutputsScreenNoTransition();

 // Clock

 void gotoClockScreenNoTransition();

Figure 43

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 43 of 44 ©2021 Marlin Technologies, Inc

such names in this example. Be sure to get the exact function name by checking
FrontendApplicationBase.hpp.

6. Next, the virtual function handleEnterButton(), called out in Figure 39, was added to the

appropriate source code files. Specifically, its definition was added to MarlinDemo4_3Inch \

TouchGFX \ gui \ src \ mainmenu_screen \ MainMenuView.cpp as follows:

Note that the functions highlighted above match those declared in

FrontendApplicationBase.hpp. These function calls change effectively change the screen to

the one highlighted by the cursor as the Enter button is pressed. Be sure to include the text

preceding the function name to avoid compile errors.

Note: The function handleEnterButton() is able to determine which menu item that the
cursor is highlighting because of the cursorPosition variable. The interactions
handleUpButton and handleDownButton are set up in TouchGFX Designer to trigger virtual
functions of the same names when the UP or DOWN buttons are pressed. Those virtual
functions (defined in MainMenuView.cpp) update the cursorPosition variable accordingly.

void MainMenuView::handleEnterButton()

{

 switch(cursorPosition)

 {

 case MENU_ITEM_CAN_RX:

 application().gotoCAN_RxScreenNoTransition();

 break;

 case MENU_ITEM_CAN_TX:

application().gotoCAN_TxScreenNoTransition();

 break;

 case MENU_ITEM_BACKLIGHTS:

application().gotoBacklightsScreenNoTransition();

 break;

 case MENU_ITEM_INPUTS_OUTPUTS:

application().gotoInputsOutputsScreenNoTransition();

 break;

 case MENU_ITEM_LEDS:

application().gotoLEDsScreenNoTransition();

 break;

 case MENU_ITEM_CLOCK:

application().gotoClockScreenNoTransition();

 break;

 default:

 break;

 }

}

505403 M-Flex 4.3-Inch Color Display
User Guide

A013493UB Page 44 of 44 ©2021 Marlin Technologies, Inc

The virtual function’s declaration was added to MarlinDemo4_3Inch \ TouchGFX \ gui \

include \ gui \ mainmenu_screen \ MainMenuView.hpp as follows:

class MainMenuView : public MainMenuViewBase

{
.

.

.

protected:

.

.

.

 virtual void handleEnterButton();

};

